Lecturer(s)


LICHARD Peter, prof. Ing. DrSc.

Course content

Motivation for quantum field theory. The final volume normalization of the free states. General Lorentz transformation. Lorentz group and its subgroups. Scalar field. KleinGordon equation. Real scalar field. Hamilton's variational principle, EulerLagrange equations. Hamiltonian formalism. Energymomentum tensor. Noether's theorem. Generalization to multicomponent fields. Complex scalar field. Quantization of the scalar field, creation and annihilation operators, Fock space. Operators of energy, momentum and charge of the scalar field. Transition to the Heisenberg picture. Commutators and contractions of the field operators. Spinor field. Dirac equation . Classical and quantum theory of the spinor field. Anticommutators. Fock space for fermions. Heisenberg picture. Electromagnetic field. The equation for the fourpotential, gauge transformations . Classical field theory. Quantization in the Coulomb calibration. Covariant quantization. Heisenberg picture. Massive vector field. Proca equation. Classical and quantum theory of the massive vector field. Continuous spectrum. Normalization of singleparticle states, field operators, creation and annihilation operators, commutators and anticommutators.

Learning activities and teaching methods

Students' selfstudy, Lectures, tutorial sessions, regularly assigned and evaluated home tasks.

Recommended literature


Formánek J. Úvod do relativistické kvantové mechaniky a kvantové teorie pole 1. Nakladatelství Karolinum, 2004. ISBN 8024600609.

Formánek J. Úvod do relativistické kvantové mechaniky a kvantové teorie pole 2a, 2b. Karolinum, 2000. ISBN 9788024600635.

Guidry M. Gauge Field Theories. John Wiley & Sons, 1991. ISBN 047135385X.

Maggiore M. A Modern Introduction to Quantum Field Theory. Oxford University Press, 2005. ISBN 0198520743.

Sterman G. An Introduction to Quantum Field Theory. Cambridge University Press, 1993. ISBN 0521311322.
