Course: Quantum Mechanics II

« Back
Course title Quantum Mechanics II
Course code UF/TF003
Organizational form of instruction Lecture + Lesson
Level of course Master
Year of study not specified
Semester Winter
Number of ECTS credits 8
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Course availability The course is available to visiting students
Lecturer(s)
  • JURÁŇ Josef, RNDr. Ph.D.
  • BLASCHKE Filip, RNDr. Ph.D.
  • GINTNER Mikuláš, RNDr. Ph.D.
Course content
Mathematical basis of Quantum Mechanics: Axioms of Quantum Mechanics theory of representations (coordinate, momentum, energy), unitary transformations, pictures of Quantum Mechanics (Schrödinger, Heisenberg, Dirac) pure and mixed states, density operator. Approximated methods of quantum theory: Generalized perturbation theory, Stark effect; variational method. Angular momentum II: Operator of generalized angular momentum addition of angular momenta, Clebsch-Gordon coefficients spin-orbit and spin-spin interactions fine structure of hydrogen, Zeeman effect. Multi-particle systems: Wavefunction and its physical meaning spin variables systems of identical particles exchange operator symmetric and antisymmetric wavefunctions, Pauli exclusion principle bosons and fermions. Helium: Calculation of energy levels by perturbative and variational methods two-electron spin functions excited states orthohelium and parahelium. Elementary theory of molecules: Adiabatic approximation hydrogen molecule vibrational, rotational and electron states of two-atom molecules. Quantum scattering theory: Partial wave analysis Born approximation S-matrix resonances. Interaction of quantum system with electromagnetic radiation: Longwave approximation selection rules for emission and absorption, quantum multipole expansion. Relativistic wave equations: Klein-Gordon equation, Dirac equation, continuity equation, interaction with electromagnetic field, non-relativistic limit, spin and intrinsic magnetic moment of Dirac particle. Utilization of groups in Quantum Mechanics: Operation of symmetry symmetries and conservation laws.

Learning activities and teaching methods
One-to-One tutorial, Monological (reading, lecture, briefing), Internship, Students' self-study
Recommended literature
  • Davydov A.S. Kvantová mechanika. Praha, 1978.
  • Formánek J. Úvod do kvantové teorie. Praha, 2004. ISBN 80-200-1176-5.
  • Klíma J., Šimurda M. Sbírka problémů z kvantové teorie. Praha, 2006.
  • Pišút J., Černý V., Prešnajder P. Zbierka úloh z kvantovej mechaniky. Bratislava/Praha, 1985.
  • Pišút J., Gomolčák L., Černý V. Úvod do kvantovej mechaniky. Bratislava/Praha, 1983.
  • Shankar R. Principles of Quantum Mechanics. New York, 1994.
  • Skála L. Úvod do kvantové mechaniky. Praha, 2005. ISBN 80-200-1316-4.


Study plans that include the course
Faculty Study plan (Version) Branch of study Category Recommended year of study Recommended semester
Faculty of Philosophy and Science in Opava Theoretical Physics (2) Physics courses 1 Winter