1. Numerical representation (representation of numbers, origin and classification of errors, absolute and relative error, cumulative error, errors of arithmetic operations). 2. Approximation (choosing the class of approximating functions, least squares method). 3. Interpolation (estimating interpolation error, iterated interpolation, Lagrange, Hermite and Newton polynomials, interpolation on equidistant nodes, Fraser diagram, inverse interpolation, splines). 4. Numerical solution of nonlinear equations (simple iteration method, bisection method, tangent method, secant methods, regula falsi). 5. Numerical solution of systems of equations (Gauss elimination with control column, LUdecomposition, Jacobi, GaussSeidl and NewtonRaphson methods, convergence of methods). 6. Sturm sequence (localization of real roots of a polynomial, Sturm sequence). 7. Numerical integration (numerical quadratire of definite integrals, rectangle, trapezoid and Simpson methods, error estimates). 8. Numerical methods for differential equations (solving initial value problems for ordinary differential equations, power series solutions, Picard approcimations, Euler polygon, RungeKutta methods, order of a method). 9. Mesh method for solution of boundary value problems for partial differential equations.


E. Vitásek. Numerické metody. SNTL, Praha, 1987.

I. Horová. Numerické metody. Masarykova univerzita v Brně, Brno, 1999. ISBN 8021022027.

J. Segethová. Základy numerické matematiky. Karolinum, Praha, 1998. ISBN 8071845965.

Z. Riečanová a kol. Numerické metody a matematická štatistika. Alfa, Bratislava, 1987. ISBN 06355987.
