Course: Theoretical Arithmetics

» List of faculties » MU » MU
Course title Theoretical Arithmetics
Course code MU/06108
Organizational form of instruction Lecture + Lesson
Level of course not specified
Year of study not specified
Semester Summer
Number of ECTS credits 6
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
  • BARAN Hynek, RNDr. Ph.D.
Course content
1) Divisibility in integral domains(integral domains, divisibility, units, associated elements, the greatest common divisor, Euclidean rings, Euclidean algorithm) 2) Gaussian rings (irreducible elements and primes, decomposition into irreducible components, divisibility Gaussian ring) 3) Polynomials (divisibility of univariate and multivariate polynomials, symmetric polynomials) 4) Algebraic and transcendental extensions (field, subfield, extensions, algebraic and transcendental elements)

Learning activities and teaching methods
Recommended literature
  • J. Blažek, M. Koman, B. Vojtášková. Algebra a teoretická aritmetika, 1. díl. Praha, 1983.
  • J. Blažek, M. Koman, B. Vojtášková. Algebra a teoretická aritmetika, 2. díl. Praha, 1985.
  • P. Horák. Algebra a teoretická aritmetika II. Praha, 1988. ISBN 1112-5690.
  • P. Horák. Algebra a teoretická aritmetika. Brno, 1987.
  • S. Lang. Algebraic structures. Addision-Wesley Reading, 1967.

Study plans that include the course
Faculty Study plan (Version) Branch of study Category Recommended year of study Recommended semester