Lecturer(s)


VOJČÁK Petr, RNDr. Ph.D.

SEDLÁŘ Vladimír, RNDr. CSc.

Course content

Affine maps. Group of affine maps. Fixed points and directions of affine maps. Basic affinities. Module of affinity, equiaffinity. Classification of affinities in the plane. Congruences of Euclidean space. Group of congruences. Reflection in a hyperplane. Symmetries in Euclidean space. Classification of congruences on a line, a plane and in threedimensional Euclidean space. Similarities. Group of similarities. Classification of similarities in the plane. Conic sections. Basic metric theory of conics. Algebraic curves of second order. Central and noncentral curves of second order. Diameters of curves of second order. Quadrics. Bilinear and quadratic forms. Classification of quadrics. Quadrics in threedimensional space. Tangent planes of surfaces of second order.

Learning activities and teaching methods

unspecified

Recommended literature


J. Janyška, A. Sekaninová. Analytická teorie kuželoseček a kvadrik. Brno, 1996. ISBN 8021014350.

M. Sekanina. Analytická geometrie II. Praha, 1989.
