 Foundations of the Riemannian geometry (manifolds, tensor fields, metric tensor, Lie derivative, Killing vectors, affine connection, curvature, torsion, geodesics)  Geometric methods in general relativity (variational principles in GR, some exact solutions of the Einstein equations)  Foundations of the Lie group theory and some of its applications in physics (Lie groups and Lie algebras and their relations, exponential map, foundations of the structural theory of Lie algebras and their representations, fiber bundles and connections on them, gauge fields, the Lagrangian and some exact solutions of the YangMills equations)


C. Isham. Modern Differential Geometry for Physicists. Singapore, 1999.

D. Krupka. Matematické základy OTR.

K. Erdmann, M. Wildon. Introduction to Lie algebras. Springer, 2006.

L.H. Ryder. Quantum Field Theory. 1996.

M. Fecko. Diferenciálna geometria a Lieove grupy pre fyzikov. Bratislava, Iris, 2004.

M. Nakahara. Geometry, Topology and Physics. Institute of Physics Publishing, 1990.

O. Kowalski. Úvod do Riemannovy geometrie. Univerzita Karlova, Praha, 1995.

S. Caroll. Lecture Notes on General Relativity.
