Course: Mathematical Methods in Physics and Engineering I

» List of faculties » MU » MU
Course title Mathematical Methods in Physics and Engineering I
Course code MU/02035
Organizational form of instruction Lecture + Lesson
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 6
Language of instruction Czech
Status of course Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Course availability The course is available to visiting students
  • STOLÍN Oldřich, RNDr. Ph.D.
  • JAHN Jiří, Mgr. Ph.D.
Course content
1. Runge-Kutta method for solving the Cauchy problem for ordinary differential equations. 2. Mesh method for boundary value problems. 3. Contractive operators, Banach fixed point theorem, direct iterative method. 4. Functionals in Hilbert space, minimum of quadratic functional, variational formulation of booundary value problem. 5. Ritz method, finite elements. 6. Polynomial approximation, least square method. 7. Spline interpolation.

Learning activities and teaching methods
Recommended literature
  • A. G. Kuroš. Kapitoly z obecné algebry. Academia Praha, 1968.
  • D. Krupka, O. Krupková. Topologie a geometrie, 1. Obecná topologie. SPN, Praha, 1989.
  • E. Vitásek. Numerické metody. SNTL, Praha, 1987.
  • J. Munkres. Topology. Prentice Hall, New Jersey, 1999. ISBN 0-131-81629-2.
  • K. Rektorys a spolupracovníci. Přehled užité matematiky. SNTL, Praha, 1968.
  • Kvasnica J. Matematický aparát fyziky. Academia, Praha, 1989.
  • N. J. Bloch. Abstract Algebra with Applications. Englewood Clifs, 1987. ISBN 0130009857.
  • S. MacLane, G. Birkhoff. Algebra. Bratislava, 1974.
  • Segethová, J. Základy numerické matematiky. Karolinum, 1988.
  • W. J. Hilbert. Modern Algebra with Applications. New York, 2004. ISBN 0-471-41451-4.
  • Z. Riečanová a kol. Numerické metody a matematická štatistika. Alfa, Bratislava, 1987. ISBN 063-559-87.

Study plans that include the course
Faculty Study plan (Version) Branch of study Category Recommended year of study Recommended semester
Mathematical Institute in Opava Mathematical Analysis (1-IVT) Mathematics courses 3 Winter
Mathematical Institute in Opava Mathematics (1-IVT) Mathematics courses 3 Winter
Mathematical Institute in Opava Mathematics (2-F) Mathematics courses 3 Winter
Mathematical Institute in Opava Applied Mathematics (1) Mathematics courses 2 Winter